PHP前端开发

用python绘制图形的实例详解

百变鹏仔 3小时前 #Python
文章标签 详解

1.环境

系统:windows10python版本:python3.6.1使用的库:matplotlib,numpy

2.numpy库产生随机数几种方法

import numpy as np
numpy.random
rand(d0, d1, ..., dn)

In [2]: x=np.random.rand(2,5)

In [3]: x
Out[3]:
array([[ 0.84286554,  0.50007593,  0.66500549,  0.97387807,  0.03993009],
       [ 0.46391661,  0.50717355,  0.21527461,  0.92692517,  0.2567891 ]])

randn(d0, d1, ..., dn)查询结果为标准正态分布

立即学习“Python免费学习笔记(深入)”;

In [4]: x=np.random.randn(2,5)

In [5]: x
Out[5]:
array([[-0.77195196,  0.26651203, -0.35045793, -0.0210377 ,  0.89749635],
       [-0.20229338,  1.44852833, -0.10858996, -1.65034606, -0.39793635]])

randint(low,high,size)

生成low到high之间(半开区间 [low, high)),size个数据

In [6]: x=np.random.randint(1,8,4)

In [7]: x
Out[7]: array([4, 4, 2, 7])

random_integers(low,high,size)

生成low到high之间(闭区间 [low, high)),size个数据

In [10]: x=np.random.random_integers(2,10,5)

In [11]: x
Out[11]: array([7, 4, 5, 4, 2])

3.散点图

x x轴y y轴s   圆点面积c   颜色marker  圆点形状alpha   圆点透明度                #其他图也类似这种配置
N=50# height=np.random.randint(150,180,20)# weight=np.random.randint(80,150,20)x=np.random.randn(N)y=np.random.randn(N)plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)plt.show()

4.折线图

# 来源:百度网盘搜索 <br>x=np.linspace(<span class="hljs-number">-10000,<span class="hljs-number">10000,<span class="hljs-number">100) <span class="hljs-comment">#将-10到10等区间分成100份y=x**<span class="hljs-number">2+x**<span class="hljs-number">3+x**<span class="hljs-number">7plt.plot(x,y)plt.show()</span></span></span></span></span></span></span>

折线图使用plot函数

5.条形图

N=5y=[20,10,30,25,15]y1=np.random.randint(10,50,5)x=np.random.randint(10,1000,N)index=np.arange(N)plt.bar(left=index,height=y,color='red',width=0.3)plt.bar(left=index+0.3,height=y1,color='black',width=0.3)plt.show()

orientation设置横向条形图

N=5y=[20,10,30,25,15]y1=np.random.randint(10,50,5)x=np.random.randint(10,1000,N)index=np.arange(N)# plt.bar(left=index,height=y,color='red',width=0.3)# plt.bar(left=index+0.3,height=y1,color='black',width=0.3)#plt.barh() 加了h就是横向的条形图,不用设置orientationplt.bar(left=0,bottom=index,width=y,color='red',height=0.5,orientation='horizontal')plt.show()

6.直方图

m1=100sigma=20x=m1+sigma*np.random.randn(2000)plt.hist(x,bins=50,color="green",normed=True)plt.show()
# #双变量的直方图# #颜色越深频率越高# #研究双变量的联合分布
#双变量的直方图#颜色越深频率越高#研究双变量的联合分布x=np.random.rand(1000)+2y=np.random.rand(1000)+3plt.hist2d(x,y,bins=40)plt.show()

7.饼状图

#设置x,y轴比例为1:1,从而达到一个正的圆
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
labes=['A','B','C','D']fracs=[15,30,45,10]explode=[0,0.1,0.05,0]#设置x,y轴比例为1:1,从而达到一个正的圆plt.axes(aspect=1)#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)plt.show()

8.箱型图

import matplotlib.pyplot as pltimport numpy as npdata=np.random.normal(loc=0,scale=1,size=1000)#sym 点的形状,whis虚线的长度plt.boxplot(data,sym="o",whis=1.5)plt.show()
#sym 点的形状,whis虚线的长度