实例讲解Python基于回溯法子集树模板解决旅行商问题(TSP)
这篇文章主要介绍了python基于回溯法子集树模板解决旅行商问题(tsp),简单描述了旅行商问题并结合实例形式分析了python使用回溯法子集树模板解决旅行商问题的相关实现步骤与操作技巧,需要的朋友可以参考下
本文实例讲述了Python基于回溯法子集树模板解决旅行商问题(TSP)。分享给大家供大家参考,具体如下:
问题
旅行商问题(Traveling Salesman Problem,TSP)是旅行商要到若干个城市旅行,各城市之间的费用是已知的,为了节省费用,旅行商决定从所在城市出发,到每个城市旅行一次后返回初始城市,问他应选择什么样的路线才能使所走的总费用最短?
立即学习“Python免费学习笔记(深入)”;
分析
此问题可描述如下:G=(V,E)是带权的有向图,找到包含V中每个结点一个有向环,亦即一条周游路线,使得这个有向环上所有边成本之和最小。
这个问题与前一篇文章http://www.jb51.net/article/122933.htm的区别就是,本题是带权的图。只要一点小小的修改即可。
解的长度是固定的n+1。
对图中的每一个节点,都有自己的邻接节点。对某个节点而言,其所有的邻接节点构成这个节点的状态空间。当路径到达这个节点时,遍历其状态空间。
最终,一定可以找到最优解!
显然,继续套用回溯法子集树模板!!!
代码
'''旅行商问题(Traveling Salesman Problem,TSP)'''# 用邻接表表示带权图n = 5 # 节点数a,b,c,d,e = range(n) # 节点名称graph = [ {b:7, c:6, d:1, e:3}, {a:7, c:3, d:7, e:8}, {a:6, b:3, d:12, e:11}, {a:1, b:7, c:12, e:2}, {a:3, b:8, c:11, d:2}]x = [0]*(n+1) # 一个解(n+1元数组,长度固定)X = [] # 一组解best_x = [0]*(n+1) # 已找到的最佳解(路径)min_cost = 0 # 最小旅费# 冲突检测def conflict(k): global n,graph,x,best_x,min_cost # 第k个节点,是否前面已经走过 if k n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n) cost = sum([graph[node1][node2] for node1,node2 in zip(x[:-1], x[1:])]) # 计算总旅费 if min_cost == 0 or cost <p><span style="font-size: medium"><strong>效果图</strong></span></p><p><img src="https://img.php.cn/upload/article/000/000/007/d02e1dc89544204ff1cf066c2144afd5-1.jpg" alt=""></p>