PHP前端开发

神经网络(BP)算法Python实现及应用

百变鹏仔 2小时前 #Python
文章标签 神经网络

这篇文章主要为大家详细介绍了python实现神经网络(bp)算法及简单应用,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Python实现神经网络算法及应用的具体代码,供大家参考,具体内容如下

首先用Python实现简单地神经网络算法:

import numpy as np# 定义tanh函数def tanh(x):  return np.tanh(x)# tanh函数的导数def tan_deriv(x):  return 1.0 - np.tanh(x) * np.tan(x)# sigmoid函数def logistic(x):  return 1 / (1 + np.exp(-x))# sigmoid函数的导数def logistic_derivative(x):  return logistic(x) * (1 - logistic(x))class NeuralNetwork:  def __init__(self, layers, activation='tanh'):    """    神经网络算法构造函数    :param layers: 神经元层数    :param activation: 使用的函数(默认tanh函数)    :return:none    """    if activation == 'logistic':      self.activation = logistic      self.activation_deriv = logistic_derivative    elif activation == 'tanh':      self.activation = tanh      self.activation_deriv = tan_deriv    # 权重列表    self.weights = []    # 初始化权重(随机)    for i in range(1, len(layers) - 1):      self.weights.append((2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25)      self.weights.append((2 * np.random.random((layers[i] + 1, layers[i + 1])) - 1) * 0.25)  def fit(self, X, y, learning_rate=0.2, epochs=10000):    """    训练神经网络    :param X: 数据集(通常是二维)    :param y: 分类标记    :param learning_rate: 学习率(默认0.2)    :param epochs: 训练次数(最大循环次数,默认10000)    :return: none    """    # 确保数据集是二维的    X = np.atleast_2d(X)    temp = np.ones([X.shape[0], X.shape[1] + 1])    temp[:, 0: -1] = X    X = temp    y = np.array(y)    for k in range(epochs):      # 随机抽取X的一行      i = np.random.randint(X.shape[0])      # 用随机抽取的这一组数据对神经网络更新      a = [X[i]]      # 正向更新      for l in range(len(self.weights)):        a.append(self.activation(np.dot(a[l], self.weights[l])))      error = y[i] - a[-1]      deltas = [error * self.activation_deriv(a[-1])]      # 反向更新      for l in range(len(a) - 2, 0, -1):        deltas.append(deltas[-1].dot(self.weights[l].T) * self.activation_deriv(a[l]))        deltas.reverse()      for i in range(len(self.weights)):        layer = np.atleast_2d(a[i])        delta = np.atleast_2d(deltas[i])        self.weights[i] += learning_rate * layer.T.dot(delta)  def predict(self, x):    x = np.array(x)    temp = np.ones(x.shape[0] + 1)    temp[0:-1] = x    a = temp    for l in range(0, len(self.weights)):      a = self.activation(np.dot(a, self.weights[l]))    return a

使用自己定义的神经网络算法实现一些简单的功能:

立即学习“Python免费学习笔记(深入)”;

 小案例:

X:                  Y
0 0                 0
0 1                 1
1 0                 1
1 1                 0

from NN.NeuralNetwork import NeuralNetworkimport numpy as npnn = NeuralNetwork([2, 2, 1], 'tanh')temp = [[0, 0], [0, 1], [1, 0], [1, 1]]X = np.array(temp)y = np.array([0, 1, 1, 0])nn.fit(X, y)for i in temp:  print(i, nn.predict(i))

发现结果基本机制,无限接近0或者无限接近1 

第二个例子:识别图片中的数字

导入数据:

from sklearn.datasets import load_digitsimport pylab as pldigits = load_digits()print(digits.data.shape)pl.gray()pl.matshow(digits.images[0])pl.show()

观察下:大小:(1797, 64)

数字0

接下来的代码是识别它们:

import numpy as npfrom sklearn.datasets import load_digitsfrom sklearn.metrics import confusion_matrix, classification_reportfrom sklearn.preprocessing import LabelBinarizerfrom NN.NeuralNetwork import NeuralNetworkfrom sklearn.cross_validation import train_test_split# 加载数据集digits = load_digits()X = digits.datay = digits.target# 处理数据,使得数据处于0,1之间,满足神经网络算法的要求X -= X.min()X /= X.max()# 层数:# 输出层10个数字# 输入层64因为图片是8*8的,64像素# 隐藏层假设100nn = NeuralNetwork([64, 100, 10], 'logistic')# 分隔训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y)# 转化成sklearn需要的二维数据类型labels_train = LabelBinarizer().fit_transform(y_train)labels_test = LabelBinarizer().fit_transform(y_test)print("start fitting")# 训练3000次nn.fit(X_train, labels_train, epochs=3000)predictions = []for i in range(X_test.shape[0]):  o = nn.predict(X_test[i])  # np.argmax:第几个数对应最大概率值  predictions.append(np.argmax(o))# 打印预测相关信息print(confusion_matrix(y_test, predictions))print(classification_report(y_test, predictions))

结果:

矩阵对角线代表预测正确的数量,发现正确率很多

这张表更直观地显示出预测正确率:

共450个案例,成功率94%