PyTorch 中的 CenterCrop
请我喝杯咖啡☕
*备忘录:
centercrop() 可以裁剪零个或多个图像,以它们为中心,如下所示:
*备忘录:
from torchvision.datasets import OxfordIIITPetfrom torchvision.transforms.v2 import CenterCropcentercrop = CenterCrop(size=100)centercrop# CenterCrop(size=(100, 100))centercrop.size# (100, 100)origin_data = OxfordIIITPet( root="data", transform=None)p600_data = OxfordIIITPet( root="data", transform=CenterCrop(size=600) # transform=CenterCrop(size=[600]) # transform=CenterCrop(size=[600, 600]))p400_data = OxfordIIITPet( root="data", transform=CenterCrop(size=400))p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=200))p100_data = OxfordIIITPet( root="data", transform=CenterCrop(size=100))p50_data = OxfordIIITPet( root="data", transform=CenterCrop(size=50))p10_data = OxfordIIITPet( root="data", transform=CenterCrop(size=10))p200p300_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[200, 300]))p300p200_data = OxfordIIITPet( root="data", transform=CenterCrop(size=[300, 200]))import matplotlib.pyplot as pltdef show_images1(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show()show_images1(data=origin_data, main_title="origin_data")show_images1(data=p600_data, main_title="p600_data")show_images1(data=p400_data, main_title="p400_data")show_images1(data=p200_data, main_title="p200_data")show_images1(data=p100_data, main_title="p100_data")show_images1(data=p50_data, main_title="p50_data")show_images1(data=p10_data, main_title="p10_data")print()show_images1(data=p200p300_data, main_title="p200p300_data")show_images1(data=p300p200_data, main_title="p300p200_data")# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓def show_images2(data, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if not s: s = [im.size[1], im.size[0]] cc = CenterCrop(size=s) # Here plt.imshow(X=cc(im)) # Here plt.tight_layout() plt.show()show_images2(data=origin_data, main_title="origin_data")show_images2(data=origin_data, main_title="p600_data", s=600)show_images2(data=origin_data, main_title="p400_data", s=400)show_images2(data=origin_data, main_title="p200_data", s=200)show_images2(data=origin_data, main_title="p100_data", s=100)show_images2(data=origin_data, main_title="p50_data", s=50)show_images2(data=origin_data, main_title="p10_data", s=10)print()show_images2(data=origin_data, main_title="origin_data")show_images2(data=origin_data, main_title="p200p300_data", s=[200, 300])show_images2(data=origin_data, main_title="p300p200_data", s=[300, 200])