用Matplotlib如何绘制堆叠图和饼图
matplotlib是一个python-tutorials.html" target="_blank">python 2d绘图库,它可以在各种平台上以各种硬拷贝格式和交互式环境生成出具有出版品质的图形。
在上篇 Matplotlib 数据可视化教程中,我们要介绍如何创建条形图、直方图和散点图。 今天我们给大家带来另外两种图,堆叠图和饼图。因为这两种图十分相似,所以放在一起介绍。
堆叠图
堆叠图用于显示『部分对整体』随时间的关系。 堆叠图基本上类似于饼图,只是随时间而变化。
让我们考虑一个情况,我们一天有 24 小时,我们想看看我们如何花费时间。 我们将我们的活动分为:睡觉,吃饭,工作和玩耍。
我们假设我们要在 5 天的时间内跟踪它,因此我们的初始数据将如下所示:
import matplotlib.pyplot as pltdays = [1,2,3,4,5]sleeping = [7,8,6,11,7]eating = [2,3,4,3,2]working = [7,8,7,2,2]playing = [8,5,7,8,13]
因此,我们的x轴将包括day变量,即 1, 2, 3, 4 和 5。然后,日期的各个成分保存在它们各自的活动中。 像这样绘制它们:
plt.stackplot(days, sleeping,eating,working,playing, colors=['m','c','r','k'])plt.xlabel('x')plt.ylabel('y')plt.title('Interesting GraphCheck it out')plt.show()
在这里,我们可以至少在颜色上看到,我们如何花费我们的时间。 问题是,如果不回头看代码,我们不知道什么颜色是什么。 下一个问题是,对于多边形来说,我们实际上不能为数据添加『标签』。 因此,在任何不止是线条,带有像这样的填充或堆叠图的地方,我们不能以固有方式标记出特定的部分。 这不应该阻止程序员。 我们可以解决这个问题:
import matplotlib.pyplot as pltdays = [1,2,3,4,5]sleeping = [7,8,6,11,7]eating = [2,3,4,3,2]working = [7,8,7,2,2]playing = [8,5,7,8,13]plt.plot([],[],color='m', label='Sleeping', linewidth=5)plt.plot([],[],color='c', label='Eating', linewidth=5)plt.plot([],[],color='r', label='Working', linewidth=5)plt.plot([],[],color='k', label='Playing', linewidth=5)plt.stackplot(days, sleeping,eating,working,playing, colors=['m','c','r','k'])plt.xlabel('x')plt.ylabel('y')plt.title('Interesting GraphCheck it out')plt.legend()plt.show()
我们在这里做的是画一些空行,给予它们符合我们的堆叠图的相同颜色,和正确标签。 我们还使它们线宽为 5,使线条在图例中显得较宽。 现在,我们可以很容易地看到,我们如何花费我们的时间。
饼图
饼图很像堆叠图,只是它们位于某个时间点。 通常,饼图用于显示部分对于整体的情况,通常以%为单位。 幸运的是,Matplotlib 会处理切片大小以及一切事情,我们只需要提供数值。
import matplotlib.pyplot as pltslices = [7,2,2,13]activities = ['sleeping','eating','working','playing']cols = ['c','m','r','b']plt.pie(slices, labels=activities, colors=cols, startangle=90, shadow= True, explode=(0,0.1,0,0), autopct='%1.1f%%')plt.title('Interesting GraphCheck it out')plt.show()
在plt.pie中,我们需要指定『切片』,这是每个部分的相对大小。 然后,我们指定相应切片的颜色列表。 接下来,我们可以选择指定图形的『起始角度』。 这使你可以在任何地方开始绘图。 在我们的例子中,我们为饼图选择了 90 度角,这意味着第一个部分是一个竖直线条。 接下来,我们可以选择给绘图添加一个字符大小的阴影,然后我们甚至可以使用explode拉出一个切片。
我们总共有四个切片,所以对于explode,如果我们不想拉出任何切片,我们传入0,0,0,0。 如果我们想要拉出第一个切片,我们传入0.1,0,0,0。
最后,我们使用autopct,选择将百分比放置到图表上面。