PHP前端开发

python排序算法有哪些?

百变鹏仔 2小时前 #Python
文章标签 算法

python排序算法有哪些?下面本篇文章给大家介绍一下python十大经典排序算法。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。

现在很多的事情都可以用算法来解决,在编程上,算法有着很重要的地位,将算法用函数封装起来,使程序能更好的调用,不需要反复编写。

Python十大经典算法:

立即学习“Python免费学习笔记(深入)”;

一、插入排序

1.算法思想

从第二个元素开始和前面的元素进行比较,如果前面的元素比当前元素大,则将前面元素 后移,当前元素依次往前,直到找到比它小或等于它的元素插入在其后面,

然后选择第三个元素,重复上述操作,进行插入,依次选择到最后一个元素,插入后即完成所有排序。

2.代码实现

def insertion_sort(arr):    #插入排序    # 第一层for表示循环插入的遍数    for i in range(1, len(arr)):        # 设置当前需要插入的元素        current = arr[i]        # 与当前元素比较的比较元素        pre_index = i - 1        while pre_index >= 0 and arr[pre_index] > current:            # 当比较元素大于当前元素则把比较元素后移            arr[pre_index + 1] = arr[pre_index]            # 往前选择下一个比较元素            pre_index -= 1        # 当比较元素小于当前元素,则将当前元素插入在 其后面        arr[pre_index + 1] = current    return arr

二、选择排序

1.算法思想

设第一个元素为比较元素,依次和后面的元素比较,比较完所有元素找到最小的元素,将它和第一个元素互换,重复上述操作,我们找出第二小的元素和第二个位置的元素互换,以此类推找出剩余最小元素将它换到前面,即完成排序。

2.代码实现

def selection_sort(arr):    #选择排序    # 第一层for表示循环选择的遍数    for i in range(len(arr) - 1):        # 将起始元素设为最小元素        min_index = i        # 第二层for表示最小元素和后面的元素逐个比较        for j in range(i + 1, len(arr)):            if arr[j] <p><span style="font-size: 16px;"><strong>三、冒泡排序</strong></span></p><p><strong>1.算法思想</strong></p><p>从第一个和第二个开始比较,如果第一个比第二个大,则交换位置,然后比较第二个和第三个,逐渐往后,经过第一轮后最大的元素已经排在最后,</p><p>所以重复上述操作的话第二大的则会排在倒数第二的位置。,那重复上述操作n-1次即可完成排序,因为最后一次只有一个元素所以不需要比较。</p><p><strong>2.代码实现</strong></p><pre class="brush:php;toolbar:false">def bubble_sort(arr):    #冒泡排序    # 第一层for表示循环的遍数    for i in range(len(arr) - 1):        # 第二层for表示具体比较哪两个元素        for j in range(len(arr) - 1 - i):            if arr[j] &gt; arr[j + 1]:                # 如果前面的大于后面的,则交换这两个元素的位置                arr[j], arr[j + 1] = arr[j + 1], arr[j]    return arr

四、快速排序

1.算法思想

找出基线条件,这种条件必须尽可能简单,不断将问题分解(或者说缩小规模),直到符合基线条件。

2.代码实现

def quick_sort(arr):  if len(arr)  pivot]    return quicksort(less) + [pivot] + quicksort(greater)print(quick_sort([10, 5, 2, 3]))

五、归并排序

1.算法思想

归并排序是分治法的典型应用。分治法(pide-and-Conquer):将原问题划分成 n 个规模较小而结构与原问题相似的子问题;递归地解决这些问题,然后再合并其结果,就得到原问题的解,分解后的数列很像一个二叉树。

具体实现步骤:

  1. 使用递归将源数列使用二分法分成多个子列

  2. 申请空间将两个子列排序合并然后返回

  3. 将所有子列一步一步合并最后完成排序

  4. 注:先分解再归并

2.代码实现

def merge_sort(arr):    #归并排序    if len(arr) == 1:        return arr    # 使用二分法将数列分两个    mid = len(arr) // 2    left = arr[:mid]    right = arr[mid:]    # 使用递归运算    return marge(merge_sort(left), merge_sort(right))def marge(left, right):    #排序合并两个数列    result = []    # 两个数列都有值    while len(left) &gt; 0 and len(right) &gt; 0:        # 左右两个数列第一个最小放前面        if left[0] <p><span style="font-size: 16px;"><strong>六、希尔排序</strong></span></p><p><strong>1.算法思想</strong></p><p>希尔排序的整体思想是将固定间隔的几个元素之间排序,然后再缩小这个间隔。这样到最后数列就成为了基本有序数列。</p><p>具体步骤:</p><ol class="list-paddingleft-2"><li><p>计算一个增量(间隔)值</p></li><li><p>对元素进行增量元素进行比较,比如增量值为7,那么就对0,7,14,21…个元素进行插入排序</p></li><li><p>然后对1,8,15…进行排序,依次递增进行排序</p></li><li><p>所有元素排序完后,缩小增量比如为3,然后又重复上述第2,3步</p></li><li><p>最后缩小增量至1时,数列已经基本有序,最后一遍普通插入即可</p></li></ol><p><strong>2.代码实现</strong></p><pre class="brush:php;toolbar:false">def shell_sort(arr):    #希尔排序    # 取整计算增量(间隔)值    gap = len(arr) // 2    while gap &gt; 0:        # 从增量值开始遍历比较        for i in range(gap, len(arr)):            j = i            current = arr[i]            # 元素与他同列的前面的每个元素比较,如果比前面的小则互换            while j - gap &gt;= 0 and current <p><span style="font-size: 16px;"><strong>七、基数排序</strong></span></p><p><strong>1.算法思想</strong></p><p>基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。</p><p><strong>2.代码实现</strong></p><p>2.1由桶排序改造,从最低位到最高位依次桶排序,最后输出最后排好的列表。</p><pre class="brush:php;toolbar:false;">def RadixSort(list,d):    for k in range(d):#d轮排序        # 每一轮生成10个列表        s=[[] for i in range(10)]#因为每一位数字都是0~9,故建立10个桶        for i in list:            # 按第k位放入到桶中            s[i//(10**k)%10].append(i)        # 按当前桶的顺序重排列表        list=[j for i in s for j in i]    return list

2.2简单实现

from random import randintdef radix_sort():  A = [randint(1, 99999999) for _ in xrange(9999)]  for k in xrange(8):    S = [ [] for _ in xrange(10)]    for j in A:      S[j / (10 ** k) % 10].append(j)    A = [a for b in S for a in b]  for i in A:    print i

八、计数排序

1.算法思想

对每一个输入元素x,确定小于x的元素个数。利用这一信息,就可以直接把x 放在它在输出数组上的位置上了,运行时间为O(n),但其需要的空间不一定,空间浪费大。

2.代码实现

from numpy.random import randintdef Conuting_Sort(A):    k = max(A)          # A的最大值,用于确定C的长度    C = [0]*(k+1)       # 通过下表索引,临时存放A的数据    B = (len(A))*[0]    # 存放A排序完成后的数组    for i in range(0, len(A)):        C[A[i]] += 1    # 记录A有哪些数字,值为A[i]的共有几个    for i in range(1, k+1):        C[i] += C[i-1]  # A中小于i的数字个数为C[i]    for i in range(len(A)-1, -1, -1):        B[C[A[i]]-1] = A[i] # C[A[i]]的值即为A[i]的值在A中的次序        C[A[i]] -= 1    # 每插入一个A[i],则C[A[i]]减一    return B

九、堆排序

1.算法思想

堆分为最大堆和最小堆,是完全二叉树。堆排序就是把堆顶的最大数取出,将剩余的堆继续调整为最大堆,具体过程在第二块有介绍,以递归实现 ,

剩余部分调整为最大堆后,再次将堆顶的最大数取出,再将剩余部分调整为最大堆,这个过程持续到剩余数只有一个时结束。

2.代码实现

import time,randomdef sift_down(arr, node, end):    root = node    #print(root,2*root+1,end)    while True:        # 从root开始对最大堆调整        child = 2 * root +1  #left child        if child  &gt; end:            #print('break',)            break        print("v:",root,arr[root],child,arr[child])        print(arr)        # 找出两个child中交大的一个        if child + 1 <p><span style="font-size: 16px;"><strong>十、桶排序</strong></span></p><p><strong>1.算法思想</strong></p><p>为了节省空间和时间,我们需要指定要排序的数据中最小以及最大的数字的值,来方便桶排序算法的运算。</p><p><strong>2.代码实现</strong></p><pre class="brush:php;toolbar:false">#桶排序def bucket_sort(the_list):    #设置全为0的数组    all_list = [0 for i in range(100)]    last_list = []    for v in the_list:        all_list[v] = 1 if all_list[v]==0 else all_list[v]+1    for i,t_v in enumerate(all_list):        if t_v != 0:            for j in range(t_v):                last_list.append(i)    return last_list

 总结:

在编程中,算法都是相通的,算法重在算法思想,相当于将一道数学上的应用题的每个条件,区间,可能出现的结果进行分解,分步骤的实现它。算法就是将具体问题的共性抽象出来,将步骤用编程语言来实现。通过这次对排序算法的整理,加深了对各算法的了解,具体的代码是无法记忆的,通过对算法思想的理解,根据伪代码来实现具体算法的编程,才是真正了解算法。

推荐学习:Python视频教程