PHP前端开发

迅速掌握Python中的Hook钩子函数

百变鹏仔 1个月前 (01-22) #Python
文章标签 钩子

Python教程栏目介绍Python中的Hook钩子函数

大量免费学习推荐,敬请访问python教程(视频)

1. 什么是Hook

经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么?

从上面可知

立即学习“Python免费学习笔记(深入)”;

本文用python来解释hook的实现方式,并展示在开源项目中hook的应用案例。hook函数和我们常听到另外一个名称:回调函数(callback function)功能是类似的,可以按照同种模式来理解。

2. hook实现例子

据我所知,hook函数最常使用在某种流程处理当中。这个流程往往有很多步骤。hook函数常常挂载在这些步骤中,为增加额外的一些操作,提供灵活性。

下面举一个简单的例子,这个例子的目的是实现一个通用往队列中插入内容的功能。流程步骤有2个

class ContentStash(object):    """    content stash for online operation    pipeline is    1. input_filter: filter some contents, no use to user    2. insert_queue(redis or other broker): insert useful content to queue    """    def __init__(self):        self.input_filter_fn = None        self.broker = []    def register_input_filter_hook(self, input_filter_fn):        """        register input filter function, parameter is content dict        Args:            input_filter_fn: input filter function        Returns:        """        self.input_filter_fn = input_filter_fn    def insert_queue(self, content):        """        insert content to queue        Args:            content: dict        Returns:        """        self.broker.append(content)    def input_pipeline(self, content, use=False):        """        pipeline of input for content stash        Args:            use: is use, defaul False            content: dict        Returns:        """        if not use:            return        # input filter        if self.input_filter_fn:            _filter = self.input_filter_fn(content)                    # insert to queue        if not _filter:            self.insert_queue(content)# test## 实现一个你所需要的钩子实现:比如如果content 包含time就过滤掉,否则插入队列def input_filter_hook(content):    """    test input filter hook    Args:        content: dict    Returns: None or content    """    if content.get('time') is None:        return    else:        return content# 原有程序content = {'filename': 'test.jpg', 'b64_file': "#test", 'data': {"result": "cat", "probility": 0.9}}content_stash = ContentStash('audit', work_dir='')# 挂上钩子函数, 可以有各种不同钩子函数的实现,但是要主要函数输入输出必须保持原有程序中一致,比如这里是contentcontent_stash.register_input_filter_hook(input_filter_hook)# 执行流程content_stash.input_pipeline(content)

3. hook在开源框架中的应用

3.1 keras

在深度学习训练流程中,hook函数体现的淋漓尽致。

一个训练过程(不包括数据准备),会轮询多次训练集,每次称为一个epoch,每个epoch又分为多个batch来训练。流程先后拆解成:

这些步骤是穿插在训练一个batch数据的过程中,这些可以理解成是钩子函数,我们可能需要在这些钩子函数中实现一些定制化的东西,比如在训练一个epoch后我们要保存下训练的模型,在结束训练时用最好的模型执行下测试集的效果等等。

keras中是通过各种回调函数来实现钩子hook功能的。这里放一个callback的父类,定制时只要继承这个父类,实现你过关注的钩子就可以了。

@keras_export('keras.callbacks.Callback')class Callback(object):  """Abstract base class used to build new callbacks.  Attributes:      params: Dict. Training parameters          (eg. verbosity, batch size, number of epochs...).      model: Instance of `keras.models.Model`.          Reference of the model being trained.  The `logs` dictionary that callback methods  take as argument will contain keys for quantities relevant to  the current batch or epoch (see method-specific docstrings).  """  def __init__(self):    self.validation_data = None  # pylint: disable=g-missing-from-attributes    self.model = None    # Whether this Callback should only run on the chief worker in a    # Multi-Worker setting.    # TODO(omalleyt): Make this attr public once solution is stable.    self._chief_worker_only = None    self._supports_tf_logs = False  def set_params(self, params):    self.params = params  def set_model(self, model):    self.model = model  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_batch_begin(self, batch, logs=None):    """A backwards compatibility alias for `on_train_batch_begin`."""  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_batch_end(self, batch, logs=None):    """A backwards compatibility alias for `on_train_batch_end`."""  @doc_controls.for_subclass_implementers  def on_epoch_begin(self, epoch, logs=None):    """Called at the start of an epoch.    Subclasses should override for any actions to run. This function should only    be called during TRAIN mode.    Arguments:        epoch: Integer, index of epoch.        logs: Dict. Currently no data is passed to this argument for this method          but that may change in the future.    """  @doc_controls.for_subclass_implementers  def on_epoch_end(self, epoch, logs=None):    """Called at the end of an epoch.    Subclasses should override for any actions to run. This function should only    be called during TRAIN mode.    Arguments:        epoch: Integer, index of epoch.        logs: Dict, metric results for this training epoch, and for the          validation epoch if validation is performed. Validation result keys          are prefixed with `val_`.    """  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_train_batch_begin(self, batch, logs=None):    """Called at the beginning of a training batch in `fit` methods.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict, contains the return value of `model.train_step`. Typically,          the values of the `Model`'s metrics are returned.  Example:          `{'loss': 0.2, 'accuracy': 0.7}`.    """    # For backwards compatibility.    self.on_batch_begin(batch, logs=logs)  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_train_batch_end(self, batch, logs=None):    """Called at the end of a training batch in `fit` methods.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict. Aggregated metric results up until this batch.    """    # For backwards compatibility.    self.on_batch_end(batch, logs=logs)  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_test_batch_begin(self, batch, logs=None):    """Called at the beginning of a batch in `evaluate` methods.    Also called at the beginning of a validation batch in the `fit`    methods, if validation data is provided.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict, contains the return value of `model.test_step`. Typically,          the values of the `Model`'s metrics are returned.  Example:          `{'loss': 0.2, 'accuracy': 0.7}`.    """  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_test_batch_end(self, batch, logs=None):    """Called at the end of a batch in `evaluate` methods.    Also called at the end of a validation batch in the `fit`    methods, if validation data is provided.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict. Aggregated metric results up until this batch.    """  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_predict_batch_begin(self, batch, logs=None):    """Called at the beginning of a batch in `predict` methods.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict, contains the return value of `model.predict_step`,          it typically returns a dict with a key 'outputs' containing          the model's outputs.    """  @doc_controls.for_subclass_implementers  @generic_utils.default  def on_predict_batch_end(self, batch, logs=None):    """Called at the end of a batch in `predict` methods.    Subclasses should override for any actions to run.    Arguments:        batch: Integer, index of batch within the current epoch.        logs: Dict. Aggregated metric results up until this batch.    """  @doc_controls.for_subclass_implementers  def on_train_begin(self, logs=None):    """Called at the beginning of training.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently no data is passed to this argument for this method          but that may change in the future.    """  @doc_controls.for_subclass_implementers  def on_train_end(self, logs=None):    """Called at the end of training.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently the output of the last call to `on_epoch_end()`          is passed to this argument for this method but that may change in          the future.    """  @doc_controls.for_subclass_implementers  def on_test_begin(self, logs=None):    """Called at the beginning of evaluation or validation.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently no data is passed to this argument for this method          but that may change in the future.    """  @doc_controls.for_subclass_implementers  def on_test_end(self, logs=None):    """Called at the end of evaluation or validation.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently the output of the last call to          `on_test_batch_end()` is passed to this argument for this method          but that may change in the future.    """  @doc_controls.for_subclass_implementers  def on_predict_begin(self, logs=None):    """Called at the beginning of prediction.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently no data is passed to this argument for this method          but that may change in the future.    """  @doc_controls.for_subclass_implementers  def on_predict_end(self, logs=None):    """Called at the end of prediction.    Subclasses should override for any actions to run.    Arguments:        logs: Dict. Currently no data is passed to this argument for this method          but that may change in the future.    """  def _implements_train_batch_hooks(self):    """Determines if this Callback should be called for each train batch."""    return (not generic_utils.is_default(self.on_batch_begin) or            not generic_utils.is_default(self.on_batch_end) or            not generic_utils.is_default(self.on_train_batch_begin) or            not generic_utils.is_default(self.on_train_batch_end))

这些钩子的原始程序是在模型训练流程中的

keras源码位置: tensorflowpythonkerasengine raining.py

部分摘录如下(## I am hook):

# Container that configures and calls `tf.keras.Callback`s.      if not isinstance(callbacks, callbacks_module.CallbackList):        callbacks = callbacks_module.CallbackList(            callbacks,            add_history=True,            add_progbar=verbose != 0,            model=self,            verbose=verbose,            epochs=epochs,            steps=data_handler.inferred_steps)      ## I am hook      callbacks.on_train_begin()      training_logs = None      # Handle fault-tolerance for multi-worker.      # TODO(omalleyt): Fix the ordering issues that mean this has to      # happen after `callbacks.on_train_begin`.      data_handler._initial_epoch = (  # pylint: disable=protected-access          self._maybe_load_initial_epoch_from_ckpt(initial_epoch))      for epoch, iterator in data_handler.enumerate_epochs():        self.reset_metrics()        callbacks.on_epoch_begin(epoch)        with data_handler.catch_stop_iteration():          for step in data_handler.steps():            with trace.Trace(                'TraceContext',                graph_type='train',                epoch_num=epoch,                step_num=step,                batch_size=batch_size):              ## I am hook              callbacks.on_train_batch_begin(step)              tmp_logs = train_function(iterator)              if data_handler.should_sync:                context.async_wait()              logs = tmp_logs  # No error, now safe to assign to logs.              end_step = step + data_handler.step_increment              callbacks.on_train_batch_end(end_step, logs)        epoch_logs = copy.copy(logs)        # Run validation.        ## I am hook        callbacks.on_epoch_end(epoch, epoch_logs)

3.2 mmdetection

mmdetection是一个目标检测的开源框架,集成了许多不同的目标检测深度学习算法(pytorch版),如faster-rcnn, fpn, retianet等。里面也大量使用了hook,暴露给应用实现流程中具体部分。

详见https://github.com/open-mmlab/mmdetection

这里看一个训练的调用例子(摘录)(https://github.com/open-mmlab/mmdetection/blob/5d592154cca589c5113e8aadc8798bbc73630d98/mmdet/apis/train.py)

def train_detector(model,                   dataset,                   cfg,                   distributed=False,                   validate=False,                   timestamp=None,                   meta=None):    logger = get_root_logger(cfg.log_level)    # prepare data loaders    # put model on gpus    # build runner    optimizer = build_optimizer(model, cfg.optimizer)    runner = EpochBasedRunner(        model,        optimizer=optimizer,        work_dir=cfg.work_dir,        logger=logger,        meta=meta)    # an ugly workaround to make .log and .log.json filenames the same    runner.timestamp = timestamp    # fp16 setting    # register hooks    runner.register_training_hooks(cfg.lr_config, optimizer_config,                                   cfg.checkpoint_config, cfg.log_config,                                   cfg.get('momentum_config', None))    if distributed:        runner.register_hook(DistSamplerSeedHook())    # register eval hooks    if validate:        # Support batch_size > 1 in validation        eval_cfg = cfg.get('evaluation', {})        eval_hook = DistEvalHook if distributed else EvalHook        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))    # user-defined hooks    if cfg.get('custom_hooks', None):        custom_hooks = cfg.custom_hooks        assert isinstance(custom_hooks, list),             f'custom_hooks expect list type, but got {type(custom_hooks)}'        for hook_cfg in cfg.custom_hooks:            assert isinstance(hook_cfg, dict),                 'Each item in custom_hooks expects dict type, but got '                 f'{type(hook_cfg)}'            hook_cfg = hook_cfg.copy()            priority = hook_cfg.pop('priority', 'NORMAL')            hook = build_from_cfg(hook_cfg, HOOKS)            runner.register_hook(hook, priority=priority)

4. 总结

本文介绍了hook的概念和应用,并给出了python的实现细则。希望对比有帮助。总结如下:

相关免费学习推荐:php编程(视频)