如何使用Python的sklearn中的CountVectorizer?
简介
countvectorizer官方文档。
将一个文档集合向量化为为一个计数矩阵。
如果不提供一个先验字典,不使用分析器做某种特征选择,那么特征的数量将等于通过分析数据发现的词汇量。
数据预处理
两种方法:1.可以不分词直接投入模型;2.可以先将中文文本进行分词。
两种方法产生的词汇会非常不同。在后面会具体给出示范。
立即学习“Python免费学习笔记(深入)”;
import jiebaimport refrom sklearn.feature_extraction.text import CountVectorizer#原始数据text = ['很少在公众场合手机外放', '大部分人都还是很认真去学习的', '他们会用行动来', '无论你现在有多颓废,振作起来', '只需要一点点地改变', '你的外在和内在都能焕然一新']#提取中文text = [' '.join(re.findall('[u4e00-u9fa5]+',tt,re.S)) for tt in text]#分词text = [' '.join(jieba.lcut(tt)) for tt in text]text
构建模型
训练模型
#构建模型vectorizer = CountVectorizer()#训练模型X = vectorizer.fit_transform(text)
所有词汇:model.get_feature_names()
#所有文档汇集后生成的词汇feature_names = vectorizer.get_feature_names()print(feature_names)
不分词生成的词汇
分词后生成的词汇
计数矩阵:X.toarray()
#每个文档相对词汇量出现次数形成的矩阵matrix = X.toarray()print(matrix)
#计数矩阵转化为DataFramedf = pd.DataFrame(matrix, columns=feature_names)df
词汇索引:model.vocabulary_
print(vectorizer.vocabulary_)