4000字详细说明,推荐20个好用到爆的Pandas函数方法
今天分享几个不为人知的pandas函数,大家可能平时看到的不多,但是使用起来倒是非常的方便,也能够帮助我们数据分析人员大幅度地提高工作效率,同时也希望大家看完之后能够有所收获
- items()方法
- iterrows()方法
- insert()方法
- assign()方法
- eval()方法
- pop()方法
- truncate()方法
- count()方法
- add_prefix()方法/add_suffix()方法
- clip()方法
- filter()方法
- first()方法
- isin()方法
- df.plot.area()方法
- df.plot.bar()方法
- df.plot.box()方法
- df.plot.pie()方法
items()方法
pandas当中的items()方法可以用来遍历数据集当中的每一列,同时返回列名以及每一列当中的内容,通过以元组的形式,示例如下df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], 'population': [1864, 22000, 80000]}, index=['panda', 'polar', 'koala'])df
output
species populationpanda bear 1864polar bear 22000koala marsupial 80000
然后我们使用items()方法
for label, content in df.items(): print(f'label: {label}') print(f'content: {content}', sep='') print("=" * 50)
output
label: speciescontent: panda bearpolar bearkoala marsupialName: species, dtype: object==================================================label: populationcontent: panda 1864polar 22000koala 80000Name: population, dtype: int64==================================================
相继的打印出了‘species’和‘population’这两列的列名和相应的内容
iterrows()方法
而对于iterrows()方法而言,其功能则是遍历数据集当中的每一行,返回每一行的索引以及带有列名的每一行的内容,示例如下for label, content in df.iterrows(): print(f'label: {label}') print(f'content: {content}', sep='') print("=" * 50)
output
label: pandacontent: species bearpopulation 1864Name: panda, dtype: object==================================================label: polarcontent: species bearpopulation 22000Name: polar, dtype: object==================================================label: koalacontent: species marsupialpopulation 80000Name: koala, dtype: object==================================================
insert()方法
insert()方法主要是用于在数据集当中的特定位置处插入数据,示例如下
df.insert(1, "size", [2000, 3000, 4000])
output
species size populationpanda bear 2000 1864polar bear 3000 22000koala marsupial 4000 80000
可见在DataFrame数据集当中,列的索引也是从0开始的
assign()方法
assign()方法可以用来在数据集当中添加新的列,示例如下
df.assign(size_1=lambda x: x.population * 9 / 5 + 32)
output
species population size_1panda bear 1864 3387.2polar bear 22000 39632.0koala marsupial 80000 144032.0
df.assign(size_1 = lambda x: x.population * 9 / 5 + 32, size_2 = lambda x: x.population * 8 / 5 + 10)
output
species population size_1 size_2panda bear 1864 3387.2 2992.4polar bear 22000 39632.0 35210.0koala marsupial 80000 144032.0 128010.0
eval()方法
eval()方法主要是用来执行用字符串来表示的运算过程的,例如
df.eval("size_3 = size_1 + size_2")
output
species population size_1 size_2 size_3panda bear 1864 3387.2 2992.4 6379.6polar bear 22000 39632.0 35210.0 74842.0koala marsupial 80000 144032.0 128010.0 272042.0
当然我们也可以同时对执行多个运算过程
df = df.eval('''size_3 = size_1 + size_2size_4 = size_1 - size_2''')
output
species population size_1 size_2 size_3 size_4panda bear 1864 3387.2 2992.4 6379.6 394.8polar bear 22000 39632.0 35210.0 74842.0 4422.0koala marsupial 80000 144032.0 128010.0 272042.0 16022.0
pop()方法
pop()方法主要是用来删除掉数据集中特定的某一列数据
df.pop("size_3")
output
panda 6379.6polar 74842.0koala 272042.0Name: size_3, dtype: float64
而原先的数据集当中就没有这个‘size_3’这一例的数据了
truncate()方法
truncate()方法主要是根据行索引来筛选指定行的数据的,示例如下
df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], 'B': ['f', 'g', 'h', 'i', 'j'], 'C': ['k', 'l', 'm', 'n', 'o']}, index=[1, 2, 3, 4, 5])
output
A B C1 a f k2 b g l3 c h m4 d i n5 e j o
我们使用truncate()方法来做一下尝试
df.truncate(before=2, after=4)
output
A B C2 b g l3 c h m4 d i n
count()方法
count()方法主要是用来计算某一列当中非空值的个数,示例如下
df = pd.DataFrame({"Name": ["John", "Myla", "Lewis", "John", "John"], "Age": [24., np.nan, 25, 33, 26], "Single": [True, True, np.nan, True, False]})
output
Name Age Single0 John 24.0 True1 Myla NaN True2 Lewis 25.0 NaN3 John 33.0 True4 John 26.0 False
我们使用count()方法来计算一下数据集当中非空值的个数
df.count()
output
Name 5Age 4Single 4dtype: int64
add_prefix()方法/add_suffix()方法
add_prefix()方法和add_suffix()方法分别会给列名以及行索引添加后缀和前缀,对于Series()数据集而言,前缀与后缀是添加在行索引处,而对于DataFrame()数据集而言,前缀与后缀是添加在列索引处,示例如下s = pd.Series([1, 2, 3, 4])
output
0 11 22 33 4dtype: int64
我们使用add_prefix()方法与add_suffix()方法在Series()数据集上
s.add_prefix('row_')
output
row_0 1row_1 2row_2 3row_3 4dtype: int64
又例如
s.add_suffix('_row')
output
0_row 11_row 22_row 33_row 4dtype: int64
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
output
A B0 1 31 2 42 3 53 4 6
示例如下
df.add_prefix("column_")
output
column_A column_B0 1 31 2 42 3 53 4 6
又例如
df.add_suffix("_column")
output
A_column B_column0 1 31 2 42 3 53 4 6
clip()方法
clip()方法主要是通过设置阈值来改变数据集当中的数值,当数值超过阈值的时候,就做出相应的调整data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}df = pd.DataFrame(data)
output
df.clip(lower = -4, upper = 4)
output
col_0 col_10 4 -21 -3 -42 0 43 -1 44 4 -4
filter()方法
pandas当中的filter()方法是用来筛选出特定范围的数据的,示例如下
df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])), index=['A', 'B', 'C', 'D'], columns=['one', 'two', 'three'])
output
one two threeA 1 2 3B 4 5 6C 7 8 9D 10 11 12
我们使用filter()方法来筛选数据
df.filter(items=['one', 'three'])
output
one threeA 1 3B 4 6C 7 9D 10 12
我们还可以使用正则表达式来筛选数据
df.filter(regex='e$', axis=1)
output
one threeA 1 3B 4 6C 7 9D 10 12
当然通过参数axis来调整筛选行方向或者是列方向的数据
df.filter(like='B', axis=0)
output
one two threeB 4 5 6
first()方法
当数据集当中的行索引是日期的时候,可以通过该方法来筛选前面几行的数据
index_1 = pd.date_range('2021-11-11', periods=5, freq='2D')ts = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=index_1)ts
output
A2021-11-11 12021-11-13 22021-11-15 32021-11-17 42021-11-19 5
我们使用first()方法来进行一些操作,例如筛选出前面3天的数据
ts.first('3D')
output
A2021-11-11 12021-11-13 2
isin()方法
isin()方法主要是用来确认数据集当中的数值是否被包含在给定的列表当中
df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])), index=['A', 'B', 'C', 'D'], columns=['one', 'two', 'three'])df.isin([3, 5, 12])
output
one two threeA False False TrueB False True FalseC False False FalseD False False True
df.plot.area()方法
下面我们来讲一下如何在Pandas当中通过一行代码来绘制图表,将所有的列都通过面积图的方式来绘制df = pd.DataFrame({ 'sales': [30, 20, 38, 95, 106, 65], 'signups': [7, 9, 6, 12, 18, 13], 'visits': [20, 42, 28, 62, 81, 50],}, index=pd.date_range(start='2021/01/01', end='2021/07/01', freq='M'))ax = df.plot.area(figsize = (10, 5))
output
df.plot.bar()方法
下面我们看一下如何通过一行代码来绘制柱状图
df = pd.DataFrame({'label':['A', 'B', 'C', 'D'], 'values':[10, 30, 50, 70]})ax = df.plot.bar(x='label', y='values', rot=20)
output
当然我们也可以根据不同的类别来绘制柱状图
age = [0.1, 17.5, 40, 48, 52, 69, 88]weight = [2, 8, 70, 1.5, 25, 12, 28]index = ['A', 'B', 'C', 'D', 'E', 'F', 'G']df = pd.DataFrame({'age': age, 'weight': weight}, index=index)ax = df.plot.bar(rot=0)
output
当然我们也可以横向来绘制图表
ax = df.plot.barh(rot=0)
output
df.plot.box()方法
我们来看一下箱型图的具体的绘制,通过pandas一行代码来实现
data = np.random.randn(25, 3)df = pd.DataFrame(data, columns=list('ABC'))ax = df.plot.box()
output
df.plot.pie()方法
接下来是饼图的绘制
df = pd.DataFrame({'mass': [1.33, 4.87 , 5.97], 'radius': [2439.7, 6051.8, 6378.1]}, index=['Mercury', 'Venus', 'Earth'])plot = df.plot.pie(y='mass', figsize=(8, 8))
output
除此之外,还有折线图、直方图、散点图等等,步骤与方式都与上述的技巧有异曲同工之妙,大家感兴趣的可以自己另外去尝试。