红黑树的原理及特点及其在Python中的代码实现
红黑树和b+树一样,是平衡二叉搜索树。红黑树每个节点都是有颜色的,要么是红色,要么黑色,但树的根是黑色,最底部的叶也是黑色的。还需要注意的是,红黑树任何节点到叶的直接路径包含相同数量的黑色节点。
红黑树如何保持自平衡的特性?
红黑树节点颜色的限制确保从根到叶的最长路径不超过最短路径的两倍。
为什么新插入的节点在红黑树中总是红色的?
这是因为插入红色节点不会违反红黑树的黑色节点数量性质。而且即便是新增红色节点插入到原本的红色节点,解决此问题会比违反黑色节点引起的问题更加容易。
立即学习“Python免费学习笔记(深入)”;
红黑树Python代码实现
import sys# 创建节点class Node(): def __init__(self, item): self.item = item self.parent = None self.left = None self.right = None self.color = 1class RedBlackTree(): def __init__(self): self.TNULL = Node(0) self.TNULL.color = 0 self.TNULL.left = None self.TNULL.right = None self.root = self.TNULL # 前序 def pre_order_helper(self, node): if node != TNULL: sys.stdout.write(node.item + " ") self.pre_order_helper(node.left) self.pre_order_helper(node.right) # 中序 def in_order_helper(self, node): if node != TNULL: self.in_order_helper(node.left) sys.stdout.write(node.item + " ") self.in_order_helper(node.right)# 后根 def post_order_helper(self, node): if node != TNULL: self.post_order_helper(node.left) self.post_order_helper(node.right) sys.stdout.write(node.item + " ") # 搜索树 def search_tree_helper(self, node, key): if node == TNULL or key == node.item: return node if key