全面的 Python 数据结构备忘单
全面的 python 数据结构备忘单
目录
- 列表
- 元组
- 套装
- 词典
- 弦乐
- 数组
- 堆栈
- 排队
- 链接列表
- 树
- 堆
- 图表
- 高级数据结构
列表
列表是有序的、可变的序列。
创建
empty_list = []list_with_items = [1, 2, 3]list_from_iterable = list("abc")list_comprehension = [x for x in range(10) if x % 2 == 0]
常用操作
# accessing elementsfirst_item = my_list[0]last_item = my_list[-1]# slicingsubset = my_list[1:4] # elements 1 to 3reversed_list = my_list[::-1]# adding elementsmy_list.append(4) # add to endmy_list.insert(0, 0) # insert at specific indexmy_list.extend([5, 6, 7]) # add multiple elements# removing elementsremoved_item = my_list.pop() # remove and return last itemmy_list.remove(3) # remove first occurrence of 3del my_list[0] # remove item at index 0# other operationslength = len(my_list)index = my_list.index(4) # find index of first occurrence of 4count = my_list.count(2) # count occurrences of 2my_list.sort() # sort in placesorted_list = sorted(my_list) # return new sorted listmy_list.reverse() # reverse in place
先进技术
# list as stackstack = [1, 2, 3]stack.append(4) # pushtop_item = stack.pop() # pop# list as queue (not efficient, use collections.deque instead)queue = [1, 2, 3]queue.append(4) # enqueuefirst_item = queue.pop(0) # dequeue# nested listsmatrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]flattened = [item for sublist in matrix for item in sublist]# list multiplicationrepeated_list = [0] * 5 # [0, 0, 0, 0, 0]# list unpackinga, *b, c = [1, 2, 3, 4, 5] # a=1, b=[2, 3, 4], c=5
元组
元组是有序的、不可变的序列。
创建
empty_tuple = ()single_item_tuple = (1,) # note the commatuple_with_items = (1, 2, 3)tuple_from_iterable = tuple("abc")
常用操作
# accessing elements (similar to lists)first_item = my_tuple[0]last_item = my_tuple[-1]# slicing (similar to lists)subset = my_tuple[1:4]# other operationslength = len(my_tuple)index = my_tuple.index(2)count = my_tuple.count(3)# tuple unpackinga, b, c = (1, 2, 3)
先进技术
# named tuplesfrom collections import namedtuplepoint = namedtuple('point', ['x', 'y'])p = point(11, y=22)print(p.x, p.y)# tuple as dictionary keys (immutable, so allowed)dict_with_tuple_keys = {(1, 2): 'value'}
套
集合是独特元素的无序集合。
创建
empty_set = set()set_with_items = {1, 2, 3}set_from_iterable = set([1, 2, 2, 3, 3]) # {1, 2, 3}set_comprehension = {x for x in range(10) if x % 2 == 0}
常用操作
# adding elementsmy_set.add(4)my_set.update([5, 6, 7])# removing elementsmy_set.remove(3) # raises keyerror if not foundmy_set.discard(3) # no error if not foundpopped_item = my_set.pop() # remove and return an arbitrary element# other operationslength = len(my_set)is_member = 2 in my_set# set operationsunion = set1 | set2intersection = set1 & set2difference = set1 - set2symmetric_difference = set1 ^ set2
先进技术
# frozen sets (immutable)frozen = frozenset([1, 2, 3])# set comparisonsis_subset = set1 <= set2is_superset = set1 >= set2is_disjoint = set1.isdisjoint(set2)# set of sets (requires frozenset)set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}
词典
字典是键值对的可变映射。
立即学习“Python免费学习笔记(深入)”;
创建
empty_dict = {}dict_with_items = {'a': 1, 'b': 2, 'c': 3}dict_from_tuples = dict([('a', 1), ('b', 2), ('c', 3)])dict_comprehension = {x: x**2 for x in range(5)}
常用操作
# accessing elementsvalue = my_dict['key']value = my_dict.get('key', default_value)# adding/updating elementsmy_dict['new_key'] = valuemy_dict.update({'key1': value1, 'key2': value2})# removing elementsdel my_dict['key']popped_value = my_dict.pop('key', default_value)last_item = my_dict.popitem() # remove and return an arbitrary key-value pair# other operationskeys = my_dict.keys()values = my_dict.values()items = my_dict.items()length = len(my_dict)is_key_present = 'key' in my_dict
先进技术
# dictionary unpackingmerged_dict = {**dict1, **dict2}# default dictionariesfrom collections import defaultdictdd = defaultdict(list)dd['key'].append(1) # no keyerror# ordered dictionaries (python 3.7+ dictionaries are ordered by default)from collections import ordereddictod = ordereddict([('a', 1), ('b', 2), ('c', 3)])# counterfrom collections import counterc = counter(['a', 'b', 'c', 'a', 'b', 'b'])print(c.most_common(2)) # [('b', 3), ('a', 2)]
弦乐
字符串是不可变的 unicode 字符序列。
创建
single_quotes = 'hello'double_quotes = "world"triple_quotes = '''multilinestring'''raw_string = r'c:usersame'f_string = f"the answer is {40 + 2}"
常用操作
# accessing charactersfirst_char = my_string[0]last_char = my_string[-1]# slicing (similar to lists)substring = my_string[1:4]# string methodsupper_case = my_string.upper()lower_case = my_string.lower()stripped = my_string.strip()split_list = my_string.split(',')joined = ', '.join(['a', 'b', 'c'])# other operationslength = len(my_string)is_substring = 'sub' in my_stringchar_count = my_string.count('a')
先进技术
# string formattingformatted = "{} {}".format("hello", "world")formatted = "%s %s" % ("hello", "world")# regular expressionsimport repattern = r'd+'matches = re.findall(pattern, my_string)# unicode handlingunicode_string = u'u0061u0062u0063'
数组
数组是紧凑的数值序列(来自数组模块)。
创建和使用
from array import arrayint_array = array('i', [1, 2, 3, 4, 5])float_array = array('f', (1.0, 1.5, 2.0, 2.5))# operations (similar to lists)int_array.append(6)int_array.extend([7, 8, 9])popped_value = int_array.pop()
堆栈
堆栈可以使用lists或collections.deque来实现。
实施和使用
# using liststack = []stack.append(1) # pushstack.append(2)top_item = stack.pop() # pop# using deque (more efficient)from collections import dequestack = deque()stack.append(1) # pushstack.append(2)top_item = stack.pop() # pop
队列
队列可以使用collections.deque或queue.queue来实现。
实施和使用
# using dequefrom collections import dequequeue = deque()queue.append(1) # enqueuequeue.append(2)first_item = queue.popleft() # dequeue# using queue (thread-safe)from queue import queueq = queue()q.put(1) # enqueueq.put(2)first_item = q.get() # dequeue
链表
python没有内置链表,但可以实现。
实施简单
class node: def __init__(self, data): self.data = data self.next = noneclass linkedlist: def __init__(self): self.head = none def append(self, data): if not self.head: self.head = node(data) return current = self.head while current.next: current = current.next current.next = node(data)
树木
树可以使用自定义类来实现。
简单的二叉树实现
class treenode: def __init__(self, value): self.value = value self.left = none self.right = noneclass binarytree: def __init__(self, root): self.root = treenode(root) def insert(self, value): self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value < node.value: if node.left is none: node.left = treenode(value) else: self._insert_recursive(node.left, value) else: if node.right is none: node.right = treenode(value) else: self._insert_recursive(node.right, value)
堆
堆可以使用 heapq 模块来实现。
用法
import heapq# create a heapheap = []heapq.heappush(heap, 3)heapq.heappush(heap, 1)heapq.heappush(heap, 4)# pop smallest itemsmallest = heapq.heappop(heap)# create a heap from a listmy_list = [3, 1, 4, 1, 5, 9]heapq.heapify(my_list)
图表
图可以使用字典来实现。
实施简单
class graph: def __init__(self): self.graph = {} def add_edge(self, u, v): if u not in self.graph: self.graph[u] = [] self.graph[u].append(v) def bfs(self, start): visited = set() queue = [start] visited.add(start) while queue: vertex = queue.pop(0) print(vertex, end=' ') for neighbor in self.graph.get(vertex, []): if neighbor not in visited: visited.add(neighbor) queue.append(neighbor)
高级数据结构
特里树
class trienode: def __init__(self): self.children = {} self.is_end = falseclass trie: def __init__(self): self.root = trienode() def insert(self, word): node = self.root for char in word: if char not in node.children: node.children[char] = trienode() node = node.children[char] node.is_end = true def search(self, word): node = self.root for char in word: if char not in node.children: return false node = node.children[char] return node.is_end
不相交集(并查集)
class DisjointSet: def __init__(self, vertices): self.parent = {v: v for v in vertices} self.rank = {v: 0 for v in vertices} def find(self, item): if self.parent[item] != item: self.parent[item] = self.find(self.parent[item]) return self.parent[item] def union(self, x, y): xroot = self.find(x) yroot = self.find(y) if self.rank[xroot] < self.rank[yroot]: self.parent[xroot] = yroot elif self.rank[xroot] > self.rank[yroot]: self.parent[yroot] = xroot else: self.parent[yroot] = xroot self.rank[xroot] += 1
这份全面的备忘单涵盖了广泛的 python 数据结构,从基本的内置类型到更高级的自定义实现。每个部分都包含创建方法、常用操作以及适用的高级技巧。
0