PHP前端开发

处理多波段栅格(Sentinel-使用 hndex 并创建索引

百变鹏仔 3天前 #Python
文章标签 栅格

嗨,在之前的博客中,我们讨论了如何使用 h3 索引和 postgresql 对单波段栅格进行栅格分析。在本博客中,我们将讨论如何处理多波段栅格并轻松创建索引。我们将使用 sentinel-2 图像并从处理后的 h3 细胞创建 ndvi 并可视化结果

下载哨兵2数据

我们正在从尼泊尔博卡拉地区的https://apps.sentinel-hub.com/eo-browser/下载sentinel 2数据,只是为了确保湖泊在图像网格中,以便我们可以轻松地验证 ndvi 结果

要下载所有乐队的哨兵图像:

您还可以下载预生成的指数,例如 ndvi、仅假色 tiff 或最适合您需要的特定波段。我们正在下载所有乐队,因为我们想自己进行处理

预处理

当我们下载原始格式时,我们将所有乐队作为与哨兵分开的 tiff

这可以通过gis工具或gdal来完成

  1. 使用 gdal_merge:

我们需要将下载的文件重命名为 band1,band2 以避免文件名中出现斜杠
本次练习最多处理频段 9,您可以根据需要选择频段

gdal_merge.py -separate -o sentinel2_composite.tif band1.tif band2.tif band3.tif band4.tif band5.tif band6.tif band7.tif band8.tif band9.tif 
  1. 使用 qgis :

家政

  gdalwarp -overwrite -dstnodata 0 "$input_file" "${output_file}_nodata.tif"
  gdal_translate -of cog "$input_file" "$output_file"

我正在使用 cog2h3 repo 中提供的 bash 脚本来自动化这些

sudo bash pre.sh sentinel2_composite.tif

h3细胞的处理和创建

现在,我们终于完成了预处理脚本,让我们继续计算复合齿轮图像中每个波段的 h3 单元格

  pip install cog2h3
  export database_url="postgresql://user:password@host:port/database"

我们对此哨兵图像使用分辨率 10,但是您还会在脚本本身中看到,它将打印栅格的最佳分辨率,使 h3 单元小于栅格中的最小像素。

  cog2h3 --cog sentinel2_composite_preprocessed.tif --table sentinel --multiband --res 10

我们花了一分钟的时间来计算结果并将结果存储在 postgresql 中

日志:

2024-08-24 08:39:43,233 - info - starting processing2024-08-24 08:39:43,234 - info - cog file already exists at sentinel2_composite_preprocessed.tif2024-08-24 08:39:43,234 - info - processing raster file: sentinel2_composite_preprocessed.tif2024-08-24 08:39:43,864 - info - determined min fitting h3 resolution for band 1: 112024-08-24 08:39:43,865 - info - resampling original raster to: 200.786148m2024-08-24 08:39:44,037 - info - resampling done for band 12024-08-24 08:39:44,037 - info - new native h3 resolution for band 1: 102024-08-24 08:39:44,738 - info - calculation done for res:10 band:12024-08-24 08:39:44,749 - info - determined min fitting h3 resolution for band 2: 112024-08-24 08:39:44,749 - info - resampling original raster to: 200.786148m2024-08-24 08:39:44,757 - info - resampling done for band 22024-08-24 08:39:44,757 - info - new native h3 resolution for band 2: 102024-08-24 08:39:45,359 - info - calculation done for res:10 band:22024-08-24 08:39:45,366 - info - determined min fitting h3 resolution for band 3: 112024-08-24 08:39:45,366 - info - resampling original raster to: 200.786148m2024-08-24 08:39:45,374 - info - resampling done for band 32024-08-24 08:39:45,374 - info - new native h3 resolution for band 3: 102024-08-24 08:39:45,986 - info - calculation done for res:10 band:32024-08-24 08:39:45,994 - info - determined min fitting h3 resolution for band 4: 112024-08-24 08:39:45,994 - info - resampling original raster to: 200.786148m2024-08-24 08:39:46,003 - info - resampling done for band 42024-08-24 08:39:46,003 - info - new native h3 resolution for band 4: 102024-08-24 08:39:46,605 - info - calculation done for res:10 band:42024-08-24 08:39:46,612 - info - determined min fitting h3 resolution for band 5: 112024-08-24 08:39:46,612 - info - resampling original raster to: 200.786148m2024-08-24 08:39:46,619 - info - resampling done for band 52024-08-24 08:39:46,619 - info - new native h3 resolution for band 5: 102024-08-24 08:39:47,223 - info - calculation done for res:10 band:52024-08-24 08:39:47,230 - info - determined min fitting h3 resolution for band 6: 112024-08-24 08:39:47,230 - info - resampling original raster to: 200.786148m2024-08-24 08:39:47,239 - info - resampling done for band 62024-08-24 08:39:47,239 - info - new native h3 resolution for band 6: 102024-08-24 08:39:47,829 - info - calculation done for res:10 band:62024-08-24 08:39:47,837 - info - determined min fitting h3 resolution for band 7: 112024-08-24 08:39:47,837 - info - resampling original raster to: 200.786148m2024-08-24 08:39:47,845 - info - resampling done for band 72024-08-24 08:39:47,845 - info - new native h3 resolution for band 7: 102024-08-24 08:39:48,445 - info - calculation done for res:10 band:72024-08-24 08:39:48,453 - info - determined min fitting h3 resolution for band 8: 112024-08-24 08:39:48,453 - info - resampling original raster to: 200.786148m2024-08-24 08:39:48,461 - info - resampling done for band 82024-08-24 08:39:48,461 - info - new native h3 resolution for band 8: 102024-08-24 08:39:49,046 - info - calculation done for res:10 band:82024-08-24 08:39:49,054 - info - determined min fitting h3 resolution for band 9: 112024-08-24 08:39:49,054 - info - resampling original raster to: 200.786148m2024-08-24 08:39:49,062 - info - resampling done for band 92024-08-24 08:39:49,063 - info - new native h3 resolution for band 9: 102024-08-24 08:39:49,647 - info - calculation done for res:10 band:92024-08-24 08:39:51,435 - info - converting h3 indices to hex strings2024-08-24 08:39:51,906 - info - overall raster calculation done in 8 seconds2024-08-24 08:39:51,906 - info - creating or replacing table sentinel in database2024-08-24 08:40:03,153 - info - table sentinel created or updated successfully in 11.25 seconds.2024-08-24 08:40:03,360 - info - processing completed

分析

现在我们的数据已经在 postgresql 中了,让我们做一些分析吧

select *from sentinel
explain analyze select h3_ix , (band8-band4)/(band8+band4) as ndvifrom public.sentinel

查询计划:

query plan                                                                                                       |-----------------------------------------------------------------------------------------------------------------+seq scan on sentinel  (cost=0.00..28475.41 rows=923509 width=16) (actual time=0.014..155.049 rows=923509 loops=1)|planning time: 0.080 ms                                                                                          |execution time: 183.764 ms                                                                                       |

正如您在此处看到的那样,该区域中的所有行的计算都是即时的。对于所有其他索引都是如此,您可以使用 h3_ix 主键计算与其他表的复杂索引连接,并从中导出有意义的结果,而不必担心,因为 postgresql 能够处理复杂的查询和表连接。

可视化和验证

让我们可视化并验证计算的索引是否正确

create table ndvi_sentinelas(select h3_ix , (band8-band4)/(band8+band4) as ndvifrom public.sentinel )
alter table ndvi_sentinel  add column geometry geometry(polygon, 4326) generated always as (h3_cell_to_boundary_geometry(h3_ix)) stored;
create index on ndvi_sentinel(geometry);

据我们所知,-1.0 到 0.1 之间的值应该代表深水或浓密的云层
让我们看看这是否属实(使第一个类别透明以查看底层图像)


由于湖周围有云,因此附近的田野被云覆盖,这是有道理的

感谢您的阅读!下一篇博客见