构建企业代理系统:核心组件设计与优化
介绍
构建企业级人工智能代理需要仔细考虑组件设计、系统架构和工程实践。本文探讨了构建健壮且可扩展的代理系统的关键组件和最佳实践。
1. 提示模板工程
1.1 模板设计模式
from typing import protocol, dictfrom jinja2 import templateclass prompttemplate(protocol): def render(self, **kwargs) -> str: passclass jinjaprompttemplate: def __init__(self, template_string: str): self.template = template(template_string) def render(self, **kwargs) -> str: return self.template.render(**kwargs)class promptlibrary: def __init__(self): self.templates: dict[str, prompttemplate] = {} def register_template(self, name: str, template: prompttemplate): self.templates[name] = template def get_template(self, name: str) -> prompttemplate: return self.templates[name]
1.2 版本控制和测试
class promptversion: def __init__(self, version: str, template: str, metadata: dict): self.version = version self.template = template self.metadata = metadata self.test_cases = [] def add_test_case(self, inputs: dict, expected_output: str): self.test_cases.append((inputs, expected_output)) def validate(self) -> bool: template = jinjaprompttemplate(self.template) for inputs, expected in self.test_cases: result = template.render(**inputs) if not self._validate_output(result, expected): return false return true
2. 分层内存系统
2.1 内存架构
from typing import any, listfrom datetime import datetimeclass memoryentry: def __init__(self, content: any, importance: float): self.content = content self.importance = importance self.timestamp = datetime.now() self.access_count = 0class memorylayer: def __init__(self, capacity: int): self.capacity = capacity self.memories: list[memoryentry] = [] def add(self, entry: memoryentry): if len(self.memories) >= self.capacity: self._evict() self.memories.append(entry) def _evict(self): # implement memory eviction strategy self.memories.sort(key=lambda x: x.importance * x.access_count) self.memories.pop(0)class hierarchicalmemory: def __init__(self): self.working_memory = memorylayer(capacity=5) self.short_term = memorylayer(capacity=50) self.long_term = memorylayer(capacity=1000) def store(self, content: any, importance: float): entry = memoryentry(content, importance) if importance > 0.8: self.working_memory.add(entry) elif importance > 0.5: self.short_term.add(entry) else: self.long_term.add(entry)
2.2 内存检索和索引
from typing import list, tupleimport numpy as npfrom sklearn.metrics.pairwise import cosine_similarityclass memoryindex: def __init__(self, embedding_model): self.embedding_model = embedding_model self.embeddings = [] self.memories = [] def add(self, memory: memoryentry): embedding = self.embedding_model.embed(memory.content) self.embeddings.append(embedding) self.memories.append(memory) def search(self, query: str, k: int = 5) -> list[tuple[memoryentry, float]]: query_embedding = self.embedding_model.embed(query) similarities = cosine_similarity( [query_embedding], self.embeddings )[0] top_k_indices = np.argsort(similarities)[-k:] return [ (self.memories[i], similarities[i]) for i in top_k_indices ]
3. 可观察的推理链
3.1 链结构
from typing import list, optionalfrom dataclasses import dataclassimport uuid@dataclassclass thoughtnode: content: str confidence: float supporting_evidence: list[str]class reasoningchain: def __init__(self): self.chain_id = str(uuid.uuid4()) self.nodes: list[thoughtnode] = [] self.metadata = {} def add_thought(self, thought: thoughtnode): self.nodes.append(thought) def get_path(self) -> list[str]: return [node.content for node in self.nodes] def get_confidence(self) -> float: if not self.nodes: return 0.0 return sum(n.confidence for n in self.nodes) / len(self.nodes)
3.2 链条监测与分析
import loggingfrom opentelemetry import tracefrom prometheus_client import histogramreasoning_time = histogram( 'reasoning_chain_duration_seconds', 'time spent in reasoning chain')class chainmonitor: def __init__(self): self.tracer = trace.get_tracer(__name__) def monitor_chain(self, chain: reasoningchain): with self.tracer.start_as_current_span("reasoning_chain") as span: span.set_attribute("chain_id", chain.chain_id) with reasoning_time.time(): for node in chain.nodes: with self.tracer.start_span("thought") as thought_span: thought_span.set_attribute( "confidence", node.confidence ) logging.info( f"thought: {node.content} " f"(confidence: {node.confidence})" )
4. 组件解耦和复用
4.1 界面设计
from abc import abc, abstractmethodfrom typing import generic, typevart = typevar('t')class component(abc, generic[t]): @abstractmethod def process(self, input_data: t) -> t: passclass pipeline: def __init__(self): self.components: list[component] = [] def add_component(self, component: component): self.components.append(component) def process(self, input_data: any) -> any: result = input_data for component in self.components: result = component.process(result) return result
4.2 组件注册
class componentregistry: _instance = none def __new__(cls): if cls._instance is none: cls._instance = super().__new__(cls) cls._instance.components = {} return cls._instance def register(self, name: str, component: component): self.components[name] = component def get(self, name: str) -> optional[component]: return self.components.get(name) def create_pipeline(self, component_names: list[str]) -> pipeline: pipeline = pipeline() for name in component_names: component = self.get(name) if component: pipeline.add_component(component) return pipeline
5. 性能监控和优化
5.1 性能指标
from dataclasses import dataclassfrom typing import dictimport time@dataclassclass performancemetrics: latency: float memory_usage: float token_count: int success_rate: floatclass performancemonitor: def __init__(self): self.metrics: dict[str, list[performancemetrics]] = {} def record_operation( self, operation_name: str, metrics: performancemetrics ): if operation_name not in self.metrics: self.metrics[operation_name] = [] self.metrics[operation_name].append(metrics) def get_average_metrics( self, operation_name: str ) -> optional[performancemetrics]: if operation_name not in self.metrics: return none metrics_list = self.metrics[operation_name] return performancemetrics( latency=sum(m.latency for m in metrics_list) / len(metrics_list), memory_usage=sum(m.memory_usage for m in metrics_list) / len(metrics_list), token_count=sum(m.token_count for m in metrics_list) / len(metrics_list), success_rate=sum(m.success_rate for m in metrics_list) / len(metrics_list) )
5.2 优化策略
class PerformanceOptimizer: def __init__(self, monitor: PerformanceMonitor): self.monitor = monitor self.thresholds = { 'latency': 1.0, # seconds 'memory_usage': 512, # MB 'token_count': 1000, 'success_rate': 0.95 } def analyze_performance(self, operation_name: str) -> List[str]: metrics = self.monitor.get_average_metrics(operation_name) if not metrics: return [] recommendations = [] if metrics.latency > self.thresholds['latency']: recommendations.append( "Consider implementing caching or parallel processing" ) if metrics.memory_usage > self.thresholds['memory_usage']: recommendations.append( "Optimize memory usage through batch processing" ) if metrics.token_count > self.thresholds['token_count']: recommendations.append( "Implement prompt optimization to reduce token usage" ) if metrics.success_rate < self.thresholds['success_rate']: recommendations.append( "Review error handling and implement retry mechanisms" ) return recommendations
结论
构建企业级agent系统需要仔细注意: