PyTorch 中的 KMNIST
请我喝杯咖啡☕
*我的帖子解释了 kmnist。
kmnist() 可以使用 kmnist 数据集,如下所示:
*备忘录:
from torchvision.datasets import kmnisttrain_data = kmnist( root="data")train_data = kmnist( root="data", train=true, transform=none, target_transform=none, download=false)test_data = kmnist( root="data", train=false)len(train_data), len(test_data)# (60000, 10000)train_data# dataset kmnist# number of datapoints: 60000# root location: data# split: traintrain_data.root# 'data'train_data.train# trueprint(train_data.transform)# noneprint(train_data.target_transform)# nonetrain_data.download# <bound method mnist.download of dataset kmnist# number of datapoints: 60000# root location: data# split: train>train_data[0]# (<pil.image.image image mode=l size=28x28>, 8)train_data[1]# (<pil.image.image image mode=l size=28x28>, 7)train_data[2]# (<pil.image.image image mode=l size=28x28>, 0)train_data[3]# (<pil.image.image image mode=l size=28x28>, 1)train_data[4]# (<pil.image.image image mode=l size=28x28>, 4)train_data.classes# ['o', 'ki', 'su', 'tsu', 'na', 'ha', 'ma', 'ya', 're', 'wo']
from torchvision.datasets import KMNISTtrain_data = KMNIST( root="data", train=True)test_data = KMNIST( root="data", train=False)import matplotlib.pyplot as pltdef show_images(data): plt.figure(figsize=(12, 2)) col = 5 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show()show_images(data=train_data)show_images(data=test_data)