# 使用 ThreadPoolExecutor 增强你的 Python 任务
文章标签
ThreadPoolExecutor
当涉及到在 python 中同时运行多个任务时,concurrent.futures 模块是一个强大而简单的工具。在本文中,我们将探讨如何使用 threadpoolexecutor 并行执行任务,并结合实际示例。
为什么使用threadpoolexecutor?
在python中,线程非常适合i/o操作占主导地位的任务,例如网络调用或文件读/写操作。使用 threadpoolexecutor,您可以:
示例:并行运行任务
让我们看一个简单的例子来理解这个概念。
守则
from concurrent.futures import threadpoolexecutorimport time# function simulating a taskdef task(n): print(f"task {n} started") time.sleep(2) # simulates a long-running task print(f"task {n} finished") return f"result of task {n}"# using threadpoolexecutordef execute_tasks(): tasks = [1, 2, 3, 4, 5] # list of tasks results = [] # create a thread pool with 3 simultaneous threads with threadpoolexecutor(max_workers=3) as executor: # execute tasks in parallel results = executor.map(task, tasks) return list(results)if __name__ == "__main__": results = execute_tasks() print("all results:", results)
预期输出
当您运行此代码时,您将看到类似这样的内容(以某种并行顺序):
task 1 startedtask 2 startedtask 3 startedtask 1 finishedtask 4 startedtask 2 finishedtask 5 startedtask 3 finishedtask 4 finishedtask 5 finishedall results: ['result of task 1', 'result of task 2', 'result of task 3', 'result of task 4', 'result of task 5']
任务 1、2 和 3 同时启动,因为 max_workers=3。其他任务(4 和 5)等待线程可用。
立即学习“Python免费学习笔记(深入)”;
何时使用它?
典型用例:
最佳实践
限制线程数:
处理异常:
使用 processpoolexecutor 执行 cpu 密集型任务:
高级示例:并行获取 url
这是一个真实的示例:并行获取多个 url。
import requestsfrom concurrent.futures import ThreadPoolExecutor# Function to fetch a URLdef fetch_url(url): try: response = requests.get(url) return f"URL: {url}, Status: {response.status_code}" except Exception as e: return f"URL: {url}, Error: {e}"# List of URLs to fetchurls = [ "https://example.com", "https://httpbin.org/get", "https://jsonplaceholder.typicode.com/posts", "https://invalid-url.com"]def fetch_all_urls(urls): with ThreadPoolExecutor(max_workers=4) as executor: results = executor.map(fetch_url, urls) return list(results)if __name__ == "__main__": results = fetch_all_urls(urls) for result in results: print(result)
结论
threadpoolexecutor 简化了 python 中的线程管理,是加速 i/o 密集型任务的理想选择。只需几行代码,您就可以并行操作并节省宝贵的时间。