Jupyter Notebooks 就像电子表格一样学习两者
电子表格是“商业软件的暗物质”:它们无处不在,它们是隐形的,并且它们将所有东西结合在一起。商业和财务在电子表格上运行;没有其他软件工具能够让这么多人为这么多不同的问题构建解决方案。在这种情况下,您必须将“Jupyter 是新 Excel”的任何断言理解为故意耸人听闻。
但是,Jupyter 笔记本确实与 Excel 电子表格有一些关键的相似之处。笔记本在科学和统计计算中无处不在,就像电子表格在业务运营和前台财务中占据主导地位一样。在这篇文章中,我们将探讨这两种工具之间的一些哲学和实践异同,试图解释为什么两者都有如此热情的粉丝和批评者。
相似之处:优点
相似之处:缺点
Excel电子表格和Jupyter笔记本都被软件工程师批评为不是“真正的软件”。除了两个工件都需要另一个程序来运行这一明显的限制之外,它们还使得遵守软件工程最佳实践变得困难:
差异
影响
微软将Python集成到Excel中的努力不会显着削弱Jupyter在科学和技术计算领域的主导地位。电子表格缺乏自然的叙述结构,这使得它们不太适合教育和可重复的研究。而且,“开放科学”社区永远不会采用美国科技巨头打造的闭源工具。
将会出现工具和“最佳实践”来减轻 Jupyter 笔记本的操作缺点3,就像电子表格一样。大多数前台用户会忽略此类准则4,从而与 IT 部门造成持续的紧张关系。在见证了 Excel 的发展历程后,许多 IT 部门认为支持 Jupyter 就像打开充满安全漏洞和维护难题的潘多拉魔盒。
这两个平台都将在可预见的未来生存。两者都不会取代对方,因为它们的目标用户群具有根本不同的技能。 从事定量建模和业务决策交叉领域工作的人员将继续需要熟悉这两种工具。
结论
使用最适合您解决问题的组织文化的工具。在某些情况下,技术要求会迫使您使用一种工具而不是另一种工具,就像只允许您使用一种工具或另一种工具的组织。如果您在 Excel 主导的领域工作并且确实需要 Python 的功能,根据我的经验,从 Python 代码读取和写入 Excel 电子表格比让 Excel 用户打开 Jupyter 笔记本更容易。
全世界的软件工程师和 IT 部门将继续看不起 Jupyter 笔记本,就像他们几十年来对待电子表格一样。事实上,MBA 类型不使用 Jupyter 笔记本,这使得 IT 部门可以更轻松地对其使用实施严格的限制。讽刺的是,许多前台用户可能只有在 Microsoft 将 Python 集成到 Excel 中后才能访问它。
一些坚持不懈的人仍然使用 MATLAB、R、SPSS 或 SAS,但随着时间的推移,高昂的许可费用将继续推动用户转向免费和开源的替代方案。占领教育市场是 MathWorks 等公司商业战略的关键部分,但它们不太可能永远坚持下去。 ↩
像 nbdime 这样的工具可以帮助对 Jupyter Notebook 进行版本控制,但使用它们又增加了一层复杂性。 ↩
papermill 等工具旨在简化生产环境中笔记本的运行。云提供商还支持在生产中创建涉及 Jupyter Notebook 的管道。 ↩
有多少人听说过构建电子表格的 FAST 标准? ↩